passivhaus & retrofit - an introduction

An introduction to Passivhaus and approaches to retrofit

Paul Testa

what makes a sustainable home?

what makes a sustainable home?

Solar panels? Heat pumps? Green roofs? Smart thermostats?

BedZed by Bill Dunster

what makes a sustainable home?

A sustainable home is one that has high comfort combined with low energy use.

This cannot be achieved by green bling alone.

We must design sustainable buildings with a Fabric First approach

Denby Dale Passivhaus by the Green Building Company

passive strategies for comfort & low energy use

what are the	a drawbacks	of the "tr	aditional" n	assiva annr	2 2 C h 2
what are the	E UIAWDACKS	or the tra	auitionai p	assive appro	Jaciif
paul testa archi	tecture				

what are the drawbacks of the "traditional" passive approach?

Variable Air Quality

Heat and energy loss through winter ventilation

The "performance gap"

the discrepancy between design aspiration and as-built performance for many new buildings in the UK can be as much as 50-100%

architects journal "mind the gap" breakfast event

what is Passivhaus?

what is Passivhaus?

Passivhaus should be designed considering all of the above.

... But it's also more...

Passivhaus is an energy standard

a maximum space heating and cooling demand of less than 15 kWh/m2.year or a maximum heating and cooling load of 10W/m2.

a maximum total primary energy demand of 120 kWh/m2/year.

an air change rate of no more than 0.6 air changes per hour @ 50 Pa.

Passivhaus is a comfort standard

17 degC minimum internal surface temperature of building elements

ventilation rate of 30m3 per hour per person

to achieve Passivhaus in the UK typically involves:

very high levels of insulation

extremely high performance windows with insulated frames

airtight building fabric

'thermal bridge free' construction

a mechanical ventilation system with highly efficient heat recovery

what does a Passivhaus look like?

it could be this:

larch house by bere architects (images www.passivhaustrust.org.uk)

this:

crossways by Hawkes architects (images www.aecb.net & www.inhabit.com)

or this:

the burrows by paul testa architecture

what does a Passivhaus look like?

Passivhaus is a performance standard

Passivhaus is a methodology

Passivhaus is a quality assurance system

Passivhaus is not a construction system

Passivhaus is not an architectural style.

self build on a shoestring - a design competition

the brief:

Design a single family home to be self-built with your own labour for less than £50K.

Costs only include specialist labour (assumed the tradional notion of "self-build").

passivhaus on a shoestring

key approaches:

off | onsite prefabrication:

carry out as much construction on the ground as possible prior to assembly

modular / standardised construction:

to make the above possible and to minimise costs keep within plywood sheet sizes and minimise variation in windows etc.

maximise material function:

OSB = structure | air-tightness | internal finish
(reduces cost but issues with protection on site)

passivhaus performance:

a fine balance between cost and performance

passivhaus energy balance pushed cost down eg. reduced size of windows

...and pushed cost up eg. specification of insulation

floor plans

the numbers

Works Package	Construction Element		Materials		Labour		Total	
Works Package 1	Set up, Clearance, Demolitions	£	-	£	-	£	-	
Works Package 2	Foundations (up to DPC)	£	1,580.65	£	-	£	1,580.65	
Works Package 3	Ground Floor Slab or Suspended Floor	£	1,694.39	£	-	£	1,694.39	
Works Package 4	Drainage & Service Trenchwork	£	763.00	£	-	£	763.00	
Works Package 5	Specialist Building System (eg timber frame, SIPs, etc if applicable)	£	4,062.35	£	-	£	4,062.35	
Works Package 6	External & Internal Walls	£	3,973.45	£	-	£	3,973.45	
Works Package 7	Intermediate Floor Zone (if applicable)	£	999.84	£	-	£	999.84	
Works Package 8	Fireplace & Chimney (if applicable)	£	-	£	-	£	-	
Works Package 9	Roof Structure, Insulation & Covering	£	3,126.93	£	-	£	3,126.93	
Works Package 10	Joinery (Windows, doors, stairs, skirtings)	£	12,260.54	£	-	£	12,260.54	
Works Package 11	Specialist Products (eg; Eco products)	£	4,300.00	£	500.00	£	4,800.00	
Works Package 12	Electrical Installation	£	1,287.84	£	150.00	£	1,437.84	
Works Package 13	Plumbing Installation	£	1,665.00	£	-	£	1,665.00	
Works Package 14	Heating Installation	£	1,200.00	£	800.00	£	2,000.00	
Works Package 15	Plastering (or dry-lining)	£	123.84	£	-	£	123.84	
Works Package 16	Kitchen and Utility Units (+ appliances)	£	3,000.00	£	-	£	3,000.00	
Works Package 17	Decorations & Wall Ceramics	£	1,174.00	£	-	£	1,174.00	
Works Package 18	Floor Finishes	£	665.00	£	-	£	665.00	
	TOTAL	£	41,876.83	£	1,450.00	£	43,326.83	

Total project costs:

Total materials costs: £41,876.83

Total Labour costs: £1,450

Total: £43,326.83

Total GIFA: 70.14m2

Total cost per m2: £617.72

Total heating costs:

Average UK kWh cost: 4.21p/kWh

(energy saving trust)

kWh per m2 per year: 14kWh/m2.a

Total treated floor area: 66.4m2

Total heating costs: £39.14 p/a

elevations

outside

passivhaus & self build resources

www.passivhaustrust.org.uk

www.aecb.net

www.greenbuildingstore.co.uk

www.elrondburrell.com

www.nasba.org.uk

www.selfbuildportal.co.uk

www.thebuildhub.co.uk

different approaches to deep retrofit

external insulation

 $\label{lem:maintains} \textbf{Maintains all of the existing structure within the new thermal envelope}$

Difficult to achieve at foundation / ground level

Air-tightness line can be inside or outside the existing structure

Potential for fewer cold bridges

Changes the external appearance of the building

external insulation **Existing Structure**

external insulation **Existing Structure** Insulation wrap Air-tightness layer Tricky Junction

internal insulation

Puts all of the existing structure outside the new thermal envelope

It's possible to keep the insulation continuous but there may be cold bridges where existing walls and floors meet the external envelope

Air-tightness line will be inside the new insulation

Retains the external appearance of the building

internal insulation Internal Insulation **Existing Structure** Air-tightness layer Air-tightness detail issue Thermal Bridge

Extending as Part of a Retrofit Strategy

An extension can decrease the heat loss form factor ratio

An extension may mean that a large part of the thermal envelope is now new, very efficient construction

Needs careful detailing with the existing building

Ideally thermal approach (internal or external insulation) is the same as the retrofit

unintended consequences

Moisture

Moisture

Moisture...!!

Best Practice Retrofit Examples

By the Green Building Store

https://www.greenbuildingstore.co.uk/lower-royd-retrofit-whole-house-radical-refurbishment/

Very Careful consideration of moisture

Experimental use of new materials and very open approach to disseminating lessons learned.

Exposed Location (damp)
Attractive Barn
Solid Stone Walls
Internal Wall Insulation

Diathonite Insulation

Sprayed on up to 100mm

Deals well with moisture

Deals well with uneven walls

Air-tight

Careful Consideration of Thermal Bridging

CompacFoam spacers

Careful Consideration of Thermal Bridging

Foamglas "pocket" in stone wall for steel beam

Careful Consideration of Thermal Bridging & air-Tightness for windows & doors

CompacFoam theshold

Window frames taped before Diathonite sprayed to reveals

Mechanical Ventilation with Heat Recovery (MVHR)

Careful duct route design

Ducts all inside thermal envelope

By Paul Testa Architecture

http://paultestaarchitecture.co.uk/portfolio/sycamore-hall/

High thermal performance

Very poor heat loss form factor made very low $kWh/m2.a\ very\ difficult$

Hugely improved daylight

Exposed location (damp)
Unattractive bungalow
Near Peak District
Narrow cavity walls
Internal wall Insulation

Complete Remodel

Two small extensions

Conventional insulation

Internal insulated dry-lining with insulated studs

Highly insulated roof

Insulated suspended timber floor

paul testa architecture

Careful air-tightness strategy

Some issues with existing walls inside the thermal envelope

paul testa architecture

MVHR Careful duct route planning

Improved Daylight very important

paul testa architecture

